An infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step

نویسندگان

چکیده مقاله:

An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infeasible interior-point methods for$P_*$-matrix linear complementarity problem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function

In this paper, an interior-point algorithm  for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...

متن کامل

A full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem

‎A full Nesterov-Todd (NT) step infeasible interior-point algorithm‎ ‎is proposed for solving monotone linear complementarity problems‎ ‎over symmetric cones by using Euclidean Jordan algebra‎. ‎Two types of‎ ‎full NT-steps are used‎, ‎feasibility steps and centering steps‎. ‎The‎ ‎algorithm starts from strictly feasible iterates of a perturbed‎ ‎problem‎, ‎and, using the central path and feasi...

متن کامل

A full-Newton step infeasible interior-point algorithm for linear programming based on a kernel function

This paper proposes an infeasible interior-point algorithm with full-Newton step for linear programming, which is an extension of the work of Roos (SIAM J. Optim., 16(4):1110–1136, 2006). We introduce a kernel function in the algorithm. For p ∈ [0, 1), the polynomial complexity can be proved and the result coincides with the best result for infeasible interior-point methods, that is, O(n log n/ε).

متن کامل

A full-Newton step infeasible interior-point algorithm for linear complementarity problems based on a kernel function

In this paper, we first present a brief infeasible interior-point method with full-Newton step for solving linear complementarity problem (LCP). The main iteration consists of a feasibility step and several centrality steps. First we present a full Newton step infeasible interior-point algorithm based on the classic logarithmical barrier function. After that a specific kernel function is introd...

متن کامل

A a Full - Newton Step Infeasible - Interior - Point Algorithm for P ∗ ( Κ ) - Horizontal Linear Complementarity Problems

In this paper we generalize an infeasible interior-point method for linear optimization to horizontal linear complementarity problem (HLCP). This algorithm starts from strictly feasible iterates on the central path of a perturbed problem that is produced by suitable perturbation in HLCP problem. Then, we use so-called feasibility steps that serves to generate strictly feasible iterates for the ...

متن کامل

a full nesterov-todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem

‎a full nesterov-todd (nt) step infeasible interior-point algorithm‎ ‎is proposed for solving monotone linear complementarity problems‎ ‎over symmetric cones by using euclidean jordan algebra‎. ‎two types of‎ ‎full nt-steps are used‎, ‎feasibility steps and centering steps‎. ‎the‎ ‎algorithm starts from strictly feasible iterates of a perturbed‎ ‎problem‎, ‎and, using the central path and feasi...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 1

صفحات  51- 70

تاریخ انتشار 2018-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023